Differential operators on toric varieties and Fourier transform
نویسندگان
چکیده
منابع مشابه
Differential Operators on Toric Varieties and Fourier Transform
We show that Fourier transforms on the Weyl algebras have a geometric counterpart in the framework of toric varieties, namely they induce isomorphisms between twisted rings of differential operators on regular toric varieties, whose fans are related to each other by reflections of one-dimensional cones. The simplest class of examples is provided by the toric varieties related by such reflection...
متن کاملDifferential Operators on Grassmann Varieties
Following Weyl’s account in The Classical Groups we develop an analogue of the (first and second) Fundamental Theorems of Invariant Theory for rings of differential operators: when V is a k-dimensional complex vector space with the standard SLkC action, we give a presentation of the ring of invariant differential operators D(C[V n])SLkC and a description of the ring of differential operators on...
متن کاملThe Mellin Transform and Spectral Properties of Toric Varieties
In this article we apply results of [W] on the twisted Mellin transform to problems in toric geometry. In particular we use these results to describe the asymptotics of probability densities associated with the monomial eigenstates, z, k ∈ Z, in Bargmann space and prove an “upstairs” version of the spectral density theorem of [BGU]. We also obtain for the z’s, “upstairs” versions of the results...
متن کاملMinicourse on Toric Varieties
1. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Characters and 1-Parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3. Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملLectures on Toric Varieties
1 Four constructions 1 1.1 First construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Second construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Third construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Fourth construction . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica
سال: 2008
ISSN: 1022-1824,1420-9020
DOI: 10.1007/s00029-008-0055-y